## Technical Datasheet

## Microwave Signal Generator

## 2500B Series - 100 kHz to 50 GHz



Ultra-Low Phase Noise and Fast-Switching Speed in a Single Unit

## Table of Contents

Frequency Ranges and available options ..... 1
Frequency Reference and Frequency Bands ..... 2
Output Power ..... 3
Power Level Accuracy ..... 5
Switching Speed ..... 7
Sweep Modes ..... 8
Remote programming ..... 8
Spectral Purity ..... 9
Phase Noise ..... 10
Frequency Modulation ..... 12
Phase Modulation ..... 12
Amplitude Modulation ..... 12
Pulse Modulation ..... 13
Internal Function Generator ..... 14
Mechanical and Environmental ..... 15
I/O Connections ..... 15
Ordering Information ..... 16

## 2500B Series Microwave Signal Generator

Specifications formally describe product performance. A specification is a numerical value, or range of values, that bounds the performance of a product parameter. The product warranty covers the performance of parameters described by specifications. Products meet all specifications when shipped from the factory.

Typical and Nominal describe product performance that is useful in the application of the product, but is not covered by the product warranty. They describe performance that is expected of a given product at room temperature after 30 minutes warm-up time, but is not subject to the same statistical analysis of specification.

## Signal Generator Frequency Range

The 2500 B series Microwave Signal Generators include six models covering 100 kHz to 50 GHz .

| Model Number | Frequency Range | RF Output Connector |
| :--- | :--- | :--- |
| 2502 B | 100 kHz to 2.5 GHz | Type-N (F) |
| 2508 B | 2 GHz to 8 GHz | Type-N (F) |
| 2520 B | 2 GHz to 20 GHz | SMA (F) |
| 2526 B | 2 GHz to 26.5 GHz | SMA (F) |
| $2540 B$ | 2 GHz to 40 GHz | $2.92 \mathrm{~mm}(\mathrm{~F})$ |
| 2550 B | 2 GHz to 50 GHz | $2.4 \mathrm{~mm}(\mathrm{~F})$ |

## Available Options

| Option |  |
| :---: | :--- |
| 17 A | Add Internal and External Modulation Suite (includes internal function generator) |
| 17 B | Add External Modulation Suite |
| 18 | Add 100 kHz to 2 GHz Frequency Range (10 MHz to 2 GHz with option 27) <br> (Standard on the 2502B model) |
| 20 | Add High RF Output Power |
| 22 | Move RF Output Connector to Rear Panel |
| 23 | Add Type-N RF Connector (for 2520B model only) |
| 26 A | Add 90 dB Mechanical Step Attenuator (for 2502B, 2508B, 2520B models only) |
| 26 B | Add 90 dB Mechanical Step Attenuator (for 2526B model only) |
| 26 C | Add 90 dB Mechanical Step Attenuator (for 2540B model only) |
| 26 D | Add 90 dB Mechanical Step Attenuator (for 2550B model only) |
| 27 | Add 110 dB Electronic Step Attenuator (for 2502B, 2508B models only) |
| 28 | Add Ultra-Low Close-in Phase Noise |
| 29 | Add Fast Frequency Switching Speed |
| 32 | Add Narrow Pulse Width $\leq 100$ ns (Requires Option 17A or 17B) |
| 44 | Replace Standard Front Panel with Blank Front Panel (Requires Option 22) |

## 2500B Series Technical Specifications

## Frequency

| Range (with option 18) | 2502B | 100 kHz to 2.5 GHz |
| :---: | :---: | :---: |
|  | 2508B | 100 kHz to 8 GHz |
|  | 2520B | 100 kHz to 20 GHz |
|  | 2526B | 100 kHz to 26.5 GHz |
|  | 2540B | 100 kHz to 40 GHz |
|  | 2550B | 100 kHz to 50 GHz |
| Frequency Accuracy | Same as time base |  |
| Frequency Resolution | 0.001 Hz |  |
| Power Slope | 0 to $0.5 \mathrm{~dB} / \mathrm{GHz}$ |  |
| Phase Adjust | $\pm 360^{\circ}$ |  |
| Phase Adjust Resolution | $0.1^{\circ}$ |  |

## Frequency Stability

| Internal Reference Output | 10 MHz | TTL level into $50 \Omega$ |
| :---: | :---: | :---: |
|  | 100 MHz | $>+5 \mathrm{dBm}$ square wave into $50 \Omega$ |
| Aging Rate ${ }^{1}$ | < $5 \times 10^{-10}$ /day |  |
| Temperature Stability ${ }^{2}$ | $< \pm 2.5 \times 10^{-8}$ |  |
| External Reference Frequency Input | Frequency | 10 MHz or 100 MHz |
|  | Frequency Deviation | $\pm 1 \mathrm{ppm}$ |
|  | Recommended Input Level | $>-5 \mathrm{dBm}$ into $50 \Omega$ for 10 MHz |
|  |  | $>+5 \mathrm{dBm}$ to $<+8 \mathrm{dBm}$ into $50 \Omega$ for 100 MHz |
| Reference Tuning | Voltage Range | 0 to 10V |
|  | Sensitivity | $2 \mathrm{ppm} / \mathrm{V}$ nominal |
|  |  | $0.2 \mathrm{ppm} / \mathrm{V}$ nominal with option 28 |
| Lock/Level Indicator (CW Mode Only) | Sync Out = +5 V (TTL High) |  |

## Frequency Bands

| Band | Frequency | N |
| :--- | :--- | :--- |
| 0 | 0.1 to $\leq 10 \mathrm{MHz}$ | N/A |
| 1 | $>10$ to $\leq 15.625 \mathrm{MHz}$ | 512 |
| 2 | $>15.625$ to $\leq 31 \mathrm{MHz}$ | 256 |
| 3 | $>31$ to $\leq 63 \mathrm{MHz}$ | 128 |
| 4 | $>63$ to $\leq 125 \mathrm{MHz}$ | 64 |
| 5 | $>125$ to $\leq 250 \mathrm{MHz}$ | 32 |
| 6 | $>250$ to $\leq 500 \mathrm{MHz}$ | 16 |
| 7 | $>500$ to $\leq 1000 \mathrm{MHz}$ | 8 |
| 8 | $>1$ to $\leq 2 \mathrm{GHz}$ | 4 |
| 10 | $>2$ to $\leq 4 \mathrm{GHz}$ | 2 |
| 11 | $>4$ to $\leq 10.1 \mathrm{GHz}$ | 1 |
| 12 | $>10.1$ to $\leq 20.2 \mathrm{GHz}$ | $1 / 2$ |
| 13 | $>20.2$ to $\leq 39.6 \mathrm{GHz}$ | $1 / 4$ |

[^0]
## Maximum Leveled Output Power in dBm

Specification applies into $50 \Omega$ load over $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ range and degrades $<2 \mathrm{~dB}$ from $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Number in ( ) is for instruments with mechanical step attenuator option 26
Number in [ ] is for instruments with electronic step attenuator option 27

| Model | 0.1 to $10 \mathrm{MHz}^{4}$ | 0.01 to 2 GHz | 2 to 8 GHz | 8 to 20 GHz | 20 to 26.5 GHz | 26.5 to 40 GHz | 40 to 50 GHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2502B ${ }^{5}$ | 10 (9) | 12 (11) [7] | N/A | N/A | N/A | N/A | N/A |
| 2508B | 10 (9) | 12 (11) [7] | 14 (13) [7] | N/A | N/A | N/A | N/A |
| 2520B | 10 (9) | 12 (11) | 14 (13) | 14 (12) | N/A | N/A | N/A |
| 2526B | 10 (9) | 11 (10) | 11 (10) | 11 (9) | 10 (8) | N/A | N/A |
| 2540B | 10 (9) | 11 (10) | 11 (10) | 11 (9) | 10 (8) | 10 (8) | N/A |
| 2550B ${ }^{6}$ | 6 (5) | 6 (5) | 5 (4) | 5 (3) | 5 (3) | 5 (3) | 5 (3) |



Giga-tronics 2550B Standard Maximum Unleveled Output Power with Step Attenuator (Nominal)

${ }^{5}$ Specification for model 2502B applies to its maximum frequency of 2.5 GHz
${ }^{6}$ Model 2550 B frequency crossing is at 39.6 GHz instead of 40 GHz

## Option 20 Maximum Leveled Output Power in dBm

Specification applies into $50 \Omega$ load over $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ range and degrades $<2 \mathrm{~dB}$ from $35{ }^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Number in () is for instruments with mechanical step attenuator option 26
Number in [ ] is for instruments with electronic step attenuator option 27

| Model | 0.1 to $10 \mathrm{MHz}^{4}$ | 0.01 to 2 GHz | 2 to 8 GHz | 8 to 18.5 GHz | 18.5 to 20 | 20 to 26.5 GHz | 26.5 to 40 GHz | 40 to 50 GHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2502B ${ }^{5}$ | 10 (9) | 14 (13) [10] | N/A | N/A | N/A | N/A | N/A | N/A |
| 2508B | 10 (9) | 14 (13) [10] | 17 (16) [10] | N/A | N/A | N/A | N/A | N/A |
| 2520B | 10 (9) | 14 (13) | 17 (16) | 20.5 (18.5) | 18.5 (16.5) | N/A | N/A | N/A |
| 2526B | 10 (9) | 14 (13) | 12 (11) | 15 (13) | 15 (13) | 11 (9) | N/A | N/A |
| 2540B | 10 (9) | 14 (13) | 12 (11) | 15 (13) | 15 (13) | 11 (9) | 11 (9) | N/A |
| $2550 \mathrm{~B}^{6}$ | 8 (7.5) | 8 (7.5) | 12 (11) | 15 (13) | 15 (13) | 15 (13) | 15 (13) | 11 (9) |

X-Band Power Boost ${ }^{7}$
X-Band Power Boost is a special feature included in 2520B with Option 20, and when enabled, increases the maximum unleveled output power to 23 (21) dBm nominal from 4 to 12.7 GHz .


[^1]RF Power Level Accuracy (dB)
Specifications apply over $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ range and degrades $<0.1 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ outside that range

Standard performance

| Frequency Range | $>+5 \mathrm{dBm}$ | +5 dBm to $>-\mathbf{- 5 ~ d B m}$ | $-\mathbf{~ d B m ~ t o ~}-\mathbf{1 0 ~ d B m}$ |
| :--- | :--- | :--- | :--- |
| 10 MHz to 20 GHz | $\pm 0.85$ | $\pm 0.7$ | $\pm 1.5$ |
| 20 GHz to 40 GHz | $\pm 1.05$ | $\pm 0.9$ | $\pm 1.5$ |
| 40 GHz to 50 GHz | $\pm 1.3$ | $\pm 0.9$ | $\pm 2.5$ |





## RF Power Level Accuracy (dB)

Specifications apply over $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ range and degrades $<0.1 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ outside that range

Performance with mechanical step attenuator option 26:

| Frequency Range | $>+5 \mathrm{dBm}$ | +5 dBm to $>-5 \mathrm{dBm}$ |  |
| :--- | :--- | :--- | :--- |
| 10 MHz to 20 GHz | $\pm 0.85$ | $\pm 0.7$ | $\mathbf{- 5 ~ d B m ~ t o ~}-90 \mathrm{dBm}$ |
| 20 GHz to 40 GHz | $\pm 1.05$ | $\pm 0.9$ | $\pm 1.2$ |
| 40 GHz to 50 GHz | $\pm 1.3$ | $\pm 0.9$ | $\pm 1.5$ |

Performance with electronic step attenuator option 27:

| Frequency Range | $>+5 \mathrm{dBm}$ | +5 dBm to $>-\mathbf{5 d B m}$ | $-\mathbf{5 d B m}$ to $\mathbf{- 1 1 0 ~ d B m}$ |
| :--- | :--- | :--- | :--- |
| 10 MHz to 8 GHz | $\pm 1.05$ | $\pm 0.9$ | $\pm 1.5$ |

## Minimum Leveled Output Power in dBm

Specification applies over $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ range and degrades $<2 \mathrm{~dB}$ from $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Number in () is for instruments with mechanical step attenuator option 26
Number in [ ] is for instruments with electronic step attenuator option 27

| Model | 0.1 to 10 MHz | 0.01 to 2 GHz | 2 to 8 GHz | 8 to 20 GHz | 20 to 26.5 GHz | 26.5 to 40 GHz | 40 to 50 GHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2502B ${ }^{9}$ | -13 (-103) | -10 (-100) [-127] | N/A | N/A | N/A | N/A | N/A |
| 2508B | -13 (-103) | -10 (-100) [-127] | -10 (-100) [-127] | N/A | N/A | N/A | N/A |
| 2520B | -13 (-103) | -10 (-100) | -10 (-100) | -10 (-100) | N/A | N/A | N/A |
| 2526B | -13 (-103) | -10 (-100) | -10 (-100) | -10 (-100) | -10 (-100) | N/A | N/A |
| 2540B | -13 (-103) | -10 (-100) | -10 (-100) | -10 (-100) | -10 (-100) | -10 (-100) | N/A |
| $2550 B^{10}$ | -13 (-103) | -10 (-100) | -10 (-100) | -10 (-100) | -5 (-95) | -5 (-95) | -5 (-90) |

Additional Output Power Specifications

| Power Offset (CW Mode) | 0 to 10 dB |
| :--- | :--- |
| Power Adjust Resolution | 0.01 dB |
| Temperature Stability | $0.025 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ |
| Output Source Match (ALC on) <br> $50 \Omega$ | $<2.0: 1$ to 50 GHz <br> $<1.5: 1$ nominal, 2 GHz to 20 GHz, <br> +5 dBm to -10 dBm |

External ALC

| Polarity | Positive or negative diode detector, or <br> positive power meter (selectable) |
| :--- | :--- |
| Range | $-80 \mathrm{dBV}(100 \mu \mathrm{~V})$ to $+6 \mathrm{dBV}(2.0 \mathrm{~V})$ |
| Power Meter Leveling Rate | 0.7 Hz, typical |
| Input Impedance: | $1 \mathrm{M} \Omega$, typical |

[^2]List Mode

| Number of Points | 4000 |  |
| :---: | :---: | :---: |
| Frequency Settling ${ }^{11,12}$ | 2 ms minimum |  |
| Frequency Settling ${ }^{11,12}$ Option 29 | $<550 \mu$ s for $\Delta \mathrm{F} \leq 500 \mathrm{MHz}^{13}$ |  |
| Amplitude Settling ${ }^{12,14}$ | < $500 \mu \mathrm{~s}$ |  |
| Digital Sweep | Trigger Modes | External, GPIB GET, Software |
|  | Sweep Modes | Continuous, Single Step, Single Sweep |
| Step Time | Standard | 2 ms to 1 sec |
|  | Option 29 | $150 \mu \mathrm{~s}$ to 1 sec |
| Sync Out Delay ${ }^{15}$ | $50 \mu \mathrm{~s}$ to 10 ms |  |
| Sync Out Delay Resolution | 10 ns |  |



Frequency Change, $\Delta F=\|(F$ stop $\times N$ stop $)-(F$ start $\times N$ start $) \mid$ where $N$ is the value in the Frequency Band Table
${ }^{11}$ Time for frequency to settle within 50 kHz of final value after a frequency switch

Frequency and Power Sweep

| Frequency Sweep Modes | Start/Stop or Center/Span |
| :---: | :---: |
| Frequency Sweep Range | Full Frequency Range |
| Frequency Range Resolution | 0.001 Hz |
| Ramp Frequency Sweep Resolution | Analog Sweep, 401, 801 or 1601 points |
| Analog Sweep Mode | Provides very fine resolution sweep, for use with Scalar Network Analyzers |
| Ramp Frequency Sweep Time ${ }^{16}$ | 30 ms to 200 sec |
| Frequency Sweep Time Resolution | $10 \mu \mathrm{~s}$ |
| Step Sweep Step Time ${ }^{16}$ | 10 ms to 10 sec |
| Step Sweep Time Resolution | 1 ms |
| Ramp Power Sweep | 0 to 25 dB |
| Ramp Power Sweep Steps | 2000 max |
| Ramp Power Sweep Resolution | 0.01 dBm |
| Ramp Power Sweep Time ${ }^{16}$ | 30 ms to 200 sec |
| Ramp Power Time Resolution | $10 \mu \mathrm{~s}$ |
| Power Slope (CW Mode, List Mode) | 0 to $0.5 \mathrm{~dB} / \mathrm{GHz}$ |
| Ramp Output | 0 to 10 V and $0.5 \mathrm{~V} / \mathrm{GHz}$ (2502B, 2508B, 2520B) or $0.25 \mathrm{~V} / \mathrm{GHz}$ (2526B, 2540B, 2550B) |
| Z-Axis Blanking | +5 V (Positive polarity only) |
| Markers | 5 Intensity markers and 5 Amplitude markers |
| Marker Resolution | 0.001 Hz |
| Save and Recall | 10 Registers (0 through 9). These saved states are preserved until over-written or erased |

## Remote Programming

| Software Interface | SCPI, IVI-C, Automation Xpress |  |  |
| :---: | :---: | :---: | :---: |
| Code Compatibility ${ }^{17}$ | Giga-tronics 2400, GT7000, GT9000, GT12000 and HP 8340, 8350, 8360, 8370, 8663 and 8673 |  |  |
| Execution Speed (GPIB) |  | AXI | SCPI |
|  | CW Switching (Typical) | 2.5 ms | 28 ms |
|  | 4000 Point List Download (Typical) | 20 sec | 28 sec |
| Remote Interface | GPIB, RS-232, USB 2.0, Ethernet LAN (100 Base T) |  |  |

[^3]Spectral Purity

| Harmonics | Maximum leveled output power or $\mathbf{+ 1 0} \mathrm{dBm}$, whichever is lower. Specification for harmonics above instrument frequency range are typical |  |
| :---: | :---: | :---: |
|  | 100 kHz to 10 MHz | $-30 \mathrm{dBc}$ |
|  | > 10 MHz to 100 MHz | $-40 \mathrm{dBc}^{18}$ |
|  | > 100 MHz to $\mathbf{3 9 . 6} \mathrm{GHz}^{19}$ | $-50 \mathrm{dBc}^{20}$ |
|  | > 39.6 to 50 GHz | -30 dBc (typical) |
| Sub-Harmonics | Maximum leveled output power or $\mathbf{+ 1 0} \mathrm{dBm}$, whichever is lower. Specification for sub-harmonics above instrument frequency range are typical |  |
|  | 100 kHz to 2.0 GHz | -80 dBc |
|  | $>2$ to 20.2 GHz | -60 dBc |
|  | > 20.2 to 50 GHz | -40 dBc |
| Spurious | Specification is for offsets $>300 \mathrm{~Hz}$ <br> Specification is $\mathbf{- 4 5 d B c}+20 \log (1 / N) d B c$ typical for offsets $<\mathbf{3 0 0 ~ H z}$ |  |
|  | 100 kHz to 10.1 GHz | $-66 \mathrm{dBc}$ |
|  | > 10.1 to 20.2 GHz | -60 dBc |
|  | > 20.2 to $39.6 \mathrm{GHz}^{19}$ | -54 dBc |
|  | > 39.6 to 50 GHz | $-50 \mathrm{dBc}$ |
| Residual FM (typical) | 50 Hz to 15 kHz Bandwidth |  |
|  | 100 kHz to $\mathbf{2 0 . 2 ~ G H z}$ | $<6 \mathrm{~Hz}$ |
|  | > 20.2 to $\mathbf{3 9 . 6} \mathrm{GHz}^{19}$ | $<12 \mathrm{~Hz}$ |
|  | $>39.6$ to 50 GHz | $<18 \mathrm{~Hz}$ |
| AM Noise (typical) | Offset $>5 \mathbf{~ M H z}$ at maximum leveled power. Applies in CW only |  |
|  | 100 kHz to 2 GHz | $-130 \mathrm{dBm} / \mathrm{Hz}$ |
|  | > 2 to 20.2 GHz | $-145 \mathrm{dBm} / \mathrm{Hz}$ |
|  | > 20.2 to 50 GHz | -132 dBm/Hz |

[^4]
## Phase Noise

SSB Phase Noise - Standard

| Carrier | Offset from Carrier ( $\mathrm{dBc} / \mathrm{Hz}$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CW (GHz) | 100 Hz | 1 kHz | 10 kHz | 100 kHz | 1 MHz |
| 1 | -96 | -109 | -121 | -121 | -147 |
| 4 | -84 | -94 | -111 | -109 | -139 |
| 10 | -74 | -96 | -106 | -105 | -135 |
| 20 | -68 | -88 | -99 | -99 | -123 |
| 30 | -67 | -79 | -96 | -96 | -124 |
| $40^{21}$ | -73 | -90 | -97 | -96 | -129 |
| $50^{21}$ | -71 | -89 | -96 | -95 | -128 |




## Phase Noise

SSB Phase Noise - Option 28

| Carrier |  | Offset from Carrier ( $\mathrm{dBc} / \mathrm{Hz}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CW (GHz) | 1 Hz | 10 Hz | 100 Hz | 1 kHz | 10 kHz | 100 kHz | 1 MHz |
| 1 | -55 | -77 | -100 | -118 | -124 | -124 | -150 |
| 4 | -43 | -67 | -90 | -108 | -114 | -112 | -142 |
| 10 | -35 | -60 | -83 | -100 | -109 | -108 | -138 |
| 20 | -29 | -54 | -77 | -94 | -102 | -102 | -126 |
| 30 | -23 | -48 | -71 | -88 | -99 | -99 | -127 |
| $40^{21}$ | -38 | -67 | -76 | -90 | -97 | -96 | -129 |
| $50^{21}$ | -36 | -64 | -74 | -89 | -96 | -95 | -128 |



[^5]
## Frequency Modulation Table

(Specification applies for frequencies above 10 MHz )

| Rate (3 dB bandwidth) | DC to 5 MHz |
| :--- | :--- |
| Peak Deviation |  |
| DC to $\mathbf{7 5 0} \mathbf{~ k H z}$ |  |
| $\mathbf{7 5 0} \mathbf{~ k H z}$ to $\mathbf{5} \mathbf{~ M H z}$ | $1.5 \mathrm{MHz} / \mathrm{N}$ |
| Modulation Index | $15 \mathrm{MHz} / \mathrm{N}$ |
| DC to $\mathbf{7 5 0} \mathbf{~ k H z}$ |  |
| $\mathbf{7 5 0} \mathbf{~ k H z}$ to $\mathbf{5 ~ M H z}$ | Deviation limited |
| < $25 / \mathrm{N}$ |  |

## Phase Modulation

(Specification applies for frequencies above 10 MHz )

| Rate (3 dB Bandwidth) | 100 Hz to 100 kHz |
| :--- | :--- |
| Peak Deviation | $10 \mathrm{rad}-\mathrm{pk} / \mathrm{N}$ |
| Accuracy | $\pm 5 \%$ at 1 kHz rate with 1 Vpeak input, $3.83 \mathrm{rad} / \mathrm{V}$ sensitivity |
| Sensitivity Range | $0.001 \mathrm{rad} / \mathrm{V}$ to $50 \mathrm{rad} / \mathrm{V}$ |
| Sensitivity Resolution | $0.001 \mathrm{rad} / \mathrm{V}$ |
| Input Range | $\pm 1 \mathrm{~V}$ |
| Input Impedance | $50 \Omega$ |

## Amplitude Modulation ${ }^{22}$

(Specification applies for frequencies above 10 MHz )

| Depth (0 dBm carrier level) | 0 to $90 \%(0 \mathrm{~dB}$ to 20 dB$)$ |
| :--- | :--- |
| Depth Resolution | $0.1 \%$ |
| Rate (3 dB bandwidth at $\mathbf{0}$ dBm carrier level) | DC to 100 kHz (Depth = 50\%) |
| Sensitivity | 0 to $95 \% / \mathrm{V}$, selectable |
| Sensitivity Resolution | $0.1 \% / \mathrm{V}$ |
| Accuracy | $\pm 10 \%$ of setting at 1 kHz rate |
| Input Range | $\pm 1 \mathrm{~V}$ |
| Input Impedance | $600 \Omega$ |

[^6]
## Pulse Modulation

(Specification applies for frequencies above 500 MHz )

| Parameter | Specification |  |
| :---: | :---: | :---: |
| Standard Operating Modes | Internal, External |  |
| Pulse On/Off Ratio ${ }^{23}$ | $>80 \mathrm{~dB}$ minimum, 90 dB nominal |  |
| Pulse Leveling Modes | Always on (closed-loop), Always off (open-loop Cal), Off for pulse widths <1 s |  |
| Rise/Fall Times | 500 MHz to 20 GHz | < 10 ns maximum, 3 ns typical |
|  | 20 GHz to 50 GHz | <25 ns maximum, 10 ns typical |
| Minimum Leveled Pulse Width ${ }^{24}$ | Internal / External | 100 ns |
| Minimum Unleveled Pulse Width ${ }^{24}$ (Option 32) | Open-Loop Calibrated Level | $25 \mathrm{~ns}, 10 \mathrm{~ns}$ nominal |
| Level Accuracy ${ }^{\mathbf{2 4}}$ | Pulse Width > 350 ns | $\pm 0.5 \mathrm{~dB}$ |
|  | Pulse width > 100 ns to 350 ns | $+1.5 \mathrm{~dB} /-0.5 \mathrm{~dB}$ |
| Level Accuracy ${ }^{24}$ (Option 32) | Pulse Width > 25 ns to 100 ns | $+2.5 \mathrm{~dB} /-0.5 \mathrm{~dB}$ |
| PRF (50\% Duty Cycle) | Leveled | $<3 \mathrm{MHz}$ |
|  | Open-Loop Calibrated (Option 32) | $<10 \mathrm{MHz}$ |
| Pulse Fidelity | Video Feed-through, 500 MHz to 2 GHz | < 5\% |
|  | Video Feed-through, 2 GHz to 50 GHz | < $1 \%$ |
|  | Compression | < $\pm 5 \mathrm{~ns}$ |
|  | RF Delay (skew) | $<75 \mathrm{~ns}$ |
| Sync Out Delay | External | 50 ns to 10 ms |
| Sync Out Delay Resolution | External | 10 ns |

## 2500B Option 32 Narrow Pulse Performance (Nominal)

10 ns pulse at 750 MHz RF


Measured directly on wide-bandwidth Oscilloscope

20 ns pulse envelope at $10 \mathbf{G H z}$ RF


Measured with low-capacitance Detector and wide-BW Oscilloscope

## Narrow Pulse Leveling Modes

Three ALC modes for pulse modulation exist. In the "Always On" mode the ALC automatically maintains the pulse amplitude accuracy for pulse widths as narrow as 350 ns over the full amplitude range, or as narrow as 100 ns at maximum leveled output power. In the "Always Off" mode the ALC provides accurate power output for pulses as low as 10 ns . Whenever RF is turned on, or the frequency or power settings are changed, the ALC turns on the RF on for 1 millisecond to calibrate the output power. After this initial calibration leveling is completed, the RF is turned off and pulse operation resumes. In the "Off for pulse widths $<1$ us" mode the ALC automatically reengages leveling whenever the pulse width exceeds $1 \mu \mathrm{~s}$. This provides automatic closed loop leveling for pulse widths greater than $1 \mu \mathrm{~s}$ while still providing accurate output power for pulse widths as low as 10 ns .

Internal Function Generator

|  | Waveforms | Sine, Square, Triangle, Ramp, Gaussian Noise |
| :---: | :---: | :---: |
|  | Rate | 0.01 Hz to 100 kHz , all waveforms |
| AM Source | Resolution | 0.01 Hz |
|  | Accuracy | Same as time base |
|  | AM Out | 2 Vpeak-to-peak into $10 \mathrm{k} \Omega$ load |
|  | Waveforms | Sine, Square, Triangle, Ramp |
|  | Rate | 0.01 Hz to 1 MHz , all waveforms |
| FM and Phase Modulation | Resolution | 0.01 Hz |
|  | Accuracy | Same as time base |
|  | FM/øM Out | 2 Vpeak-to-peak into $10 \mathrm{k} \Omega$ load |
| Pu | Single Pulse Modes | Continuous, Gated, Triggered |
| Pulse Modulation Mod | Pulse Burst Modes | Continuous, Gated, Triggered |
|  | Pulse Width | 10 ns to 1 s |
|  | Pulse Repetition (PRI) | 20 ns to 1 s |
|  | Pulse Burst Mode Pulses | 2 to 300 |
|  | Pulse Burst Period | 30 ns to 10 s |
|  | Sync Out Delay | -1 s to +1 s |
| Pulse Modulation Source | Triggered RF Pulse Delay | 100 ns to 1 s |
| e Modulation Sour | Resolution | 10 ns |
|  | Pulse Accuracy | $\pm 2 \%$ of setting or $\pm 15$ ns whichever is greater. $\pm 0.08 \%$ nominal |
|  | Delay Accuracy | $\pm 15$ ns |
|  | Pulse Modulation Out | 2 V into $50 \Omega$ |
|  | Gated Mode Input | Active High or Active Low polarity |
|  | Triggered Mode Input | Rising Edge or Falling Edge polarity |

## Physical Table

| Environmental | MIL-PRF-28800F, Class 3 |
| :--- | :--- |
| Safety | EN61010 |
| Weight | $<35 \mathrm{lbs}(15.9 \mathrm{~kg})$ |
| Emissions | EN61326 |
| Rack Height | $30(5.25$ inches) (133 mm) |
| Dimensions (with rack handles) | 19 inches (W) $\times 21$ inches (D) $\times 5.2$ inches (H) <br> 483 mm (W) 534 mm (D) $\times 133 \mathrm{~mm}$ (H) |
| Power | 90 to 253 VAC, 47 to 440 Hz <br> 300 Watts nominal, 350 Watts max. |



## 2500B Series Rear Panel I/O Connector Descriptions

| Connector Label | Specifications | Connector Type |
| :---: | :---: | :---: |
| EXT ALC | External ALC Input | BNC |
| RF OUT | $50 \Omega$ Rear Panel Output, option 22 only | SMA, N, 2.92 mm or 2.4 mm |
| FM/ $\phi$ M OUT | Internal modulation generator output; 2 Vp -p into $10 \mathrm{k} \Omega$ | BNC |
| PULSE OUT | $\mathrm{A}+4 \mathrm{~V}$ video representation of the pulsed RF output signal | BNC |
| AM OUT | Internal modulation generator output; 2 Vp -p into $10 \mathrm{k} \Omega$ | BNC |
| PM SYNC OUT | Synchronization output pulse width $>75 \mathrm{~ns}$ width | BNC |
| FM/ $\phi$ M IN | $50 \Omega,+/-1 \mathrm{~V}$ maximum | BNC |
| AM IN | $600 \Omega$ | BNC |
| PULSE IN/PM TRIG IN | $50 \Omega$, TTL levels, polarity selectable | BNC |
| LOCK/LEVEL | +5 V indicator for phase/level lock for CW mode and in list mode | BNC |
| REF TUNE | 0 to +10 V | BNC |
| SYNC OUT | +5 V output pulse | BNC |
| TRIGGER IN | Used to trigger a list. Accepts a TTL level signal of > 50 ns width. | BNC |
| BLANKING | +5 V output indicator for band crossing, filter switching, and retraces | BNC |
| RAMP OUT | 0 to 10 V | BNC |
| STOP SWP IN/OUT | $+5 \mathrm{~V}, 2 \mathrm{k} \Omega$, active low | BNC |
| V/GHz | $0.5 \mathrm{~V} / \mathrm{GHz}$ (2502B, 2508B, 2520B) or $0.25 \mathrm{~V} / \mathrm{GHz}$ (2526B, 2540B, 2550B) | BNC |
| 100 MHz OUT | +5dBm typical, $50 \Omega$ | BNC |
| 10 MHz OUT | $2 \mathrm{Vp}-\mathrm{p}, 50 \Omega$ | BNC |
| EXT REF IN | $10 \mathrm{MHz} \pm 50 \mathrm{~Hz}$ ( >-5dBm ), $100 \mathrm{MHz} \pm 500 \mathrm{~Hz}$ ( > +5dBm to +8 dBm ), $50 \Omega$ | BNC |
| GPIB | A 24-pin IEEE STD 488.2 connector for control of the instrument during remote operation using GPIB | Type 57 |
| RS-232 | A DB-9 connector for control of the instrument during remote operation using RS-232 serial communications | DB-9 |
| USB | USB 2.0 (Device) for control of the instrument during remote operation using USB communications | USB type B |
| LAN | 100 Base T Ethernet for control of the instrument during remote operation using Ethernet | RJ45 |
| AC POWER INPUT | 90 to 253 VAC, auto-sensing, 47 Hz to 440 Hz | IEC Power Line |

## Included Accessories

The 2500B series Microwave Signal Generators include the following items: Giga-tronics Automation Xpress software (AX), operation and programming manual (CDROM), AC power cord ( 6 foot) and combined rack mount and handle brackets.

## Ordering Information

Giga-tronics has a network of RF and Microwave instrumentation sales engineers and a staff of factory support personnel to help you find the best, most economical instrument for your specific applications. In addition to helping you select the best instrument for your needs, our staff can provide quotations, assist you in placing orders, and do everything necessary to ensure that your business transactions with Giga-tronics are handled efficiently.

| Model Number | Frequency Range |
| :--- | :--- |
| 2502 B | 100 kHz to 2.5 GHz |
| 2508 B | 2 GHz to 8 GHz |
| 2520 B | 2 GHz to 20 GHz |
| 2526 B | 2 GHz to 26.5 GHz |
| 2540 B | 2 GHz to 40 GHz |
| 2550 B | 2 GHz to 50 GHz |

Available Options and Accessories

| Option | Description |
| :--- | :--- |
| 17 A | Add Internal and External Modulation Suite (includes internal function generator) |
| 17 B | Add External Modulation Suite |
| 18 | Add 100 kHz to 2 GHz Frequency Range (Standard on the 2502B model) |
| 20 | Add High RF Output Power |
| 22 | Move RF Output Connector to Rear Panel |
| 23 | Add Type-N RF Connector (for 2520B model only) |
| 26 A | Add 90 dB Mechanical Step Attenuator (for 2502B, 2508B, 2520B models only) |
| $26 B$ | Add 90 dB Mechanical Step Attenuator (for 2526B model only) |
| $26 C$ | Add 90 dB Mechanical Step Attenuator (for 2540B model only) |
| 26 D | Add 90 dB Mechanical Step Attenuator (for 2550B model only) |
| 27 | Add 110 dB Electronic Step Attenuator (for 2502B, 2508B models only) |
| 28 | Add Ultra-Low Close-in Phase Noise |
| 29 | Add Fast Frequency Switching Speed |
| 32 | Add Narrow Pulse Width $\leq 100$ ns (Requires Option 17A or 17B) |
| 44 | Replace Standard Front Panel with Blank Front Panel (Requires Option 22) |
| 46 | Add Rack Slide Kit |
| EWS20 | Three Year Warranty (Two Year Extended Warranty) |
| EWS40 | Five Year Warranty (Four Year Extended Warranty) |

000 "4TECT"
+7(499)685-44-44
info@4test.ru
www.4test.ru


[^0]:    ${ }^{1}$ After 30 days
    ${ }^{2}$ Temperature stability over operating range of $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ after 30 days
    ${ }^{3}$ Band 12 frequency range extends to 40 GHz for model 2540 B

[^1]:    ${ }^{4}$ Specification is typical below 10 MHz
    ${ }^{5}$ Specification for model 2502 B applies to its maximum frequency of 2.5 GHz
    Model 2550 B frequency crossing is at 39.6 GHz instead of 40 GHz
    AM specifications do not apply with X-Band Power Boost ON

[^2]:    ${ }^{8}$ Specification is nominal for levels below -90 dBm
    ${ }^{9}$ Specification for model 2502B applies to its maximum frequency of 2.5 GHz
    ${ }^{10}$ Model 2550 B frequency crossing is at 39.6 GHz instead of 40 GHz only

[^3]:    ${ }^{16}$ Sweep Rate must be $<500 \mathrm{MHz} / \mathrm{msec}^{13}$ Settling time not specified with FM turned on
    ${ }^{17}$ See programming manual for supported commands. Basic emulation is included, and when emulating another signal generator, is limited to the capabilities, parameters and resolutions of the emulated instrument.

[^4]:    ${ }^{18}$ Specification is -35 dBc for frequencies $<50 \mathrm{MHz}$ on 2550 B model only
    ${ }^{19}$ Specification for model 2540B extends to 40 GHz
    ${ }^{20}$ Specification is nominally -25 dBc at +10 dBm with X-Band Power Boost enabled

[^5]:    ${ }^{21}$ Specifications for 40 GHz and 50 GHz are nominal

[^6]:    ${ }^{22}$ Modulation peaks must be less than maximum available power

